Pavement Condition Management Coupled with Skid Management at the Network Level: A Multi-Choice Goal Programming Approach

Author:

Amin Md Al12,Machemehl Randy B.1ORCID

Affiliation:

1. Civil, Architectural and Environmental Engineering Department, The University of Texas at Austin, Austin, TX

2. Texas Department of Transportation (TxDOT), Austin, TX

Abstract

Highways promote economic growth and social development. Traditionally, pavement management considers pavement conditions for maintenance and rehabilitation (M&R) decision-making along with system constraints. One of the major tasks of highway agencies is to promote safety. Highway safety involves a complicated interaction of multiple factors. However, it is well established that there is a link between pavement surface friction and safety. Pavement surface characteristics affect the safety and comfort of passengers. Since the pavement management process considers only pavement physical conditions in M&R decision-making, there is a need to include safety indicators in the process to promote both riding comfort and safety. This study aims to integrate the pavement surface friction, that is, the skid resistance, into traditional pavement management. An optimization model has been proposed based on multi-choice goal programming by systematically integrating skid resistance into pavement M&R decision-making along with pavement conditions. Multi-choice goal programming allows setting interval aspirations rather than a fixed target. A case study has been conducted to demonstrate the usefulness of the proposed model in managing pavement conditions and pavement skids together. The case study considered five goals related to pavement conditions, skid states, and M&R costs. Interaction among the goals is discussed in different scenarios. The case study also uses friction treatment with traditional pavement management treatments. The model can capture the interaction between pavement conditions and pavement skids and determine the program that best achieves the goals. The proposed method provides a simple approach to selecting a network-level M&R program and obtaining insights into the management of conditions and skid together.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3