Evaluating Crack Identification Performance of 3D Pavement Imaging Systems Using Portable High-Resolution 3D Scanning

Author:

Salameh Ryan1ORCID,(Lucas) Yu Pingzhou1,Yang Zhongyu1ORCID,(James) Tsai Yi-Chang1ORCID

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

With the increasing adoption of three-dimensional (3D) pavement imaging systems by highway agencies for automated pavement condition assessment, coupled with the advent of diverse systems from different manufacturers, there is a need for standard procedures for the verification and certification of systems’ performance in regard to distress identification, especially for cracking that is a key contributor for triggering maintenance and rehabilitation activities. Although some procedures were adopted by agencies for a rough verification of cracking identification accuracy using ground reference established subjectively by trained raters, a more rigorous and objective method is needed to match the continuous advancement in the systems’ capabilities and data quality requirements. As portable high-resolution 3D scanning technologies have become commercially available, there is an opportunity to leverage them for establishing a more trustable ground reference for the data quality evaluation. This paper proposes a methodology that uses high-resolution 3D scanners to establish the ground reference for field pavement cracking distress to evaluate the crack identification capability of 3D pavement imaging systems in regard to crack quantity, position, and width. A case study was performed by scanning sample pavement cracking spots using “FARO Arm Quantum S” scanner to collect ground reference images and a 3D pavement imaging system installed on the “Georgia Tech Sensing Van” to collect test images to validate the feasibility of the proposed methodology.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3