Estimating and Comparing Response Times in Traditional and Connected Environments

Author:

Sharma Anshuman1,Zheng Zuduo1,Kim Jiwon1,Bhaskar Ashish2,Haque Md. Mazharul2

Affiliation:

1. School of Civil Engineering, The University of Queensland, St Lucia, QLD, Australia

2. School of Civil Engineering and Built Environment, Queensland University of Technology, George St, Brisbane, QLD, Australia

Abstract

Response time (RT) is a critical human factor that influences traffic flow characteristics and traffic safety, and is governed by drivers’ decision-making behavior. Unlike the traditional environment (TE), the connected environment (CE) provides information assistance to drivers. This in-vehicle informed environment can influence drivers’ decision-making and thereby their RTs. Therefore, to ascertain the impact of CE on RT, this study develops RT estimation methodologies for TE (RTEM-TE) and CE (RTEM-CE), using vehicle trajectory data. Because of the intra-lingual inconsistency among traffic engineers, modelers, and psychologists in the usage of the term RT, this study also provides a ubiquitous definition of RT that can be used in a wide range of applications. Both RTEM-TE and RTEM-CE are built on the fundamental stimulus–response relationship, and they utilize the wavelet-based energy distribution of time series of speeds to detect the stimulus–response points. These methodologies are rigorously examined for their efficiency and accuracy using noise-free and noisy synthetic data, and driving simulator data. Analysis results demonstrate the excellent performance of both the methodologies. Moreover, the analysis shows that the mean RT in CE is longer than the mean RT in TE.

Funder

australian research council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3