Using Probabilistic Fault Tree Analysis and Monte Carlo Simulation to Examine the Likelihood of Risks Associated with Ballasted Railway Drainage Failure

Author:

Usman Kristianto12,Peter Nicholas Burrow Michael2,Singh Ghataora Gurmel2,Sasidharan Manu2

Affiliation:

1. Department of Civil Engineering, Engineering Faculty, University of Lampung, Bandar Lampung, Indonesia

2. Department of Civil Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, UK

Abstract

Inadequate track drainage can lead to a variety of issues, including flooding, accelerated track degradation, and progressive or sudden failure of railway track, slope, or embankment. These can result in unplanned track maintenance, additional passenger travel costs, and damage to third party property. However, railway drainage asset management is challenging because it involves the consideration of large interconnected assets, limited maintenance budgets, and unknown failure probabilities. To address this issue, this paper introduces a risk-informed approach for railway drainage asset management that uses fault tree analysis to identify the factors that contribute to railway drainage flood risk and quantifies the likelihood of the occurrence of these factors using Monte Carlo simulation. This rational approach enables drainage asset managers to evaluate easily the factors that affect the likelihood of railway track drainage failure, thereby facilitating the prioritization of appropriate mitigation measures and in so doing improve the allocation of scarce maintenance resources. The analysis identified 46 basic and 49 intermediate contributing factors associated with drainage failure of ballasted railway track (undesired event). The usefulness of the approach is demonstrated for three sites on the UK railway network, namely, Ardsley Tunnel, Clay Cross Tunnel, and Draycott. The analysis shows that the Clay Cross Tunnel had the highest probability of drainage failure and should be prioritized for maintenance over the other two sites. The maintenance required should focus on blockages because of vegetation overgrowth or debris accumulation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3