Modeling Road Pavement Rutting Using Artificial Neural Network and Conventional Measurements

Author:

Shatnawi Nawras1ORCID,Taleb Obaidat Mohammed23ORCID,Al-Sharideah Amjad2

Affiliation:

1. Department of Surveying and Geomatics Engineering, Al-Balqa Applied University, AL-Salt, Jordan

2. Department of Civil Engineering, Jordan University of Science and Technology (JUST), Irbid, Jordan

3. Department of Civil Engineering, Jadara University, Jordan

Abstract

Rutting leads hydroplaning, accidents, poor riding quality, and significant maintenance costs. This study assists the development of statistical and Artificial pavement rutting models. The proposed methodology is reliable, time-saving, cost-saving, and comfortable. The suggested technique to anticipate rutting considers traffic volumes, pavement, and geometrical parameters such as lane and shoulder widths. This research modeled 33 main highways' ruts. Most of these roads have serious de-stressing problems with rutted pavement. The developed rutting prediction models demonstrated a medium to high correlation between rut depth and independent variables including annual average daily traffic, truck fleet percentage, pavement thickness, and number of lanes. The correlation coefficients such as R2 were found to be moderate for most of the developed models. The linear models of rutting prediction were statistically significant, with R2 values averaging around 66%, whereas the logistic regression model was the best developed rutting model, with an R2 value of 67%, when all variables, including traffic, pavement, and geometry, were considered. Nonlinear models with an R2 value of 57% were used to get similar findings. The artificial neural network (ANN) has been used in this study to model rut depth with same independent variables and gave higher results with R2 value of 82%. The findings showed that an ANN outperformed regression modeling in predicting the depth of a rut.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference32 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3