Affiliation:
1. Florida International University, Miami, FL
2. Leidos, Inc., Saxton Transportation Operations Laboratory, McLean, VA
Abstract
Transportation agencies utilize key performance indicators (KPIs) to measure the performance of their traffic networks and business processes. To make effective decisions based on these KPIs, there is a need to align the KPIs at the strategic, tactical, and operational decision levels and to set targets for these KPIs. However, there has been no known effort to develop methods to ensure this alignment producing a correlative model to explore the relationships to support the derivation of the KPI targets. Such development will lead to more realistic target setting and effective decisions based on these targets, ensuring that agency goals are met subject to the available resources. This paper presents a methodology in which the KPIs are represented in a tree-like structure that can be used to depict the association between metrics at the strategic, tactical, and operational levels. Utilizing a combination of business intelligence and machine learning tools, this paper demonstrates that it is possible not only to identify such relationships but also to quantify them. The proposed methodology compares the effectiveness and accuracy of multiple machine learning models including ordinary least squares regression (OLS), least absolute shrinkage and selection operator (LASSO), and ridge regression, for the identification and quantification of interlevel relationships. The output of the model allows the identification of which metrics have more influence on the upper-level KPI targets. The analysis can be performed at the system, facility, and segment levels, providing important insights on what investments are needed to improve system performance.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献