Safety Assessment of Ecodriving Vehicles on Following Traffic

Author:

Duan Xi1,Abbas Montasir2

Affiliation:

1. University of Florida, Gainesville, FL

2. Virginia Polytechnic Institute and State University, Blacksburg, VA

Abstract

Ecodriving aims to achieve the best fuel efficiency by guiding vehicles to travel at a planned speed trajectory, which is developed by making use of topography or signal phasing and timing (SPaT) information. Previous work has mainly focused on algorithm development or the assessment of ecodriving efficiency. However, there has been little research regarding the safety issues of ecodriving. This study addresses safety concerns for normal driving vehicles (FNV) following ecodriving vehicles (EV). Time to collision (TTC) was used as the dependent variable to quantify the critical situation. The effects on TTC of three network-related factors: initial signal status, ambient vehicles, and speed limit, are considered and investigated. Six testing scenarios (experimental group) where FNV (subjects) followed an EV were generated with JMP (statistical software), and six baseline scenarios with conventional cars only were used as the control group. The driving simulation study was designed and implemented with a drive safety DNS-250 simulator. Twenty-nine volunteer drivers participated in the driving simulation study. The results show that the initial signal status has a significant influence on TTC of FNV following EV in the initial signal part, deceleration part, and overall optimization horizon. In addition, the speed limits have a significant impact the TTC of FNV following EV in the acceleration part. Overall, following an EV is safer than following a non-EV, with the exception of FNV in the initial signal part and deceleration part when the initial signal is green.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Factors affecting motorcyclists’ behavior in car-following condition;Transportation Research Part F: Traffic Psychology and Behaviour;2021-10

2. A Value Proposition of Cooperative Bus-Holding Transit Signal Priority Strategy in Connected and Automated Vehicles Environment;IEEE Transactions on Intelligent Transportation Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3