Robust Spatiotemporal Lane Detection Model

Author:

Zhang Jiyong1ORCID,Wang Bo1ORCID,Naeem Hamad2,Dai Shengxin3ORCID

Affiliation:

1. The School of Information Technology, Luoyang Normal University, Luoyang, China

2. The Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Kralove, Hradec Kralove, Czech Republic

3. The School of Computer Science, Sichuan University, Chengdu, China

Abstract

Lane lines are frequently interrupted in autonomous driving environments because of some objective conditions, such as occlusion or congestion, which often lead to the decreased detection performance of a model. Current detection methods relying on spatial information struggle to detect complete lane lines in such conditions. In this paper, we build a robust lane detection model by fusing spatiotemporal information and dilated convolution. The proposed model is aided by the dilated convolution, which expands the scope of convolutional processes to extract more lane feature information from various perception environments. Convolutional gate recurrent units (ConvGRUs) are employed at the high-level semantic phase to aid the proposed model to get more effective lane feature information by dealing with the spatiotemporal information of consecutive frames. Compared with models FCN, DeepLabv3, RefineNet, SCNN, Cheng-DET, LDNet, SegNet, SegNet-Ego-Lane, Res18, Res34, ResNet-18-SAD, ResNet-34-SAD, ENet-SAD, ReNet-101, R-18-E2E, R-34-E2E, R-101-SAD, R-101-E2E, ResNet34-Qin, LaneNet, PINET(64x32), UNet_ConvLSTMSegNet_ConvLSTM, LDSTNet, extensive experiments on three well-known lane detection benchmarks prove the usefulness of the proposed model, achieving robust results and competitive performance.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

The Science and Technology Project of Sichuan Province

The Key scientific research projects in higher education institutions in Henan Province

The Science and Technology Program of Sichuan Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3