Reactive Extrusion of Waste Plastics with Compatibilizer and Lightly Pyrolyzed Crumb Rubber for Asphalt Modification

Author:

Ma Yuetan1ORCID,Demchuk Zoriana2,Polaczyk Pawel3ORCID,Zhou Hongyu1,He Qiang1ORCID,Baumgardner Gaylon L.4ORCID,Huang Baoshan1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN

2. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN

3. Civil, Environmental, and Construction Engineering, Texas Tech University

4. Paragon Technical Services, Inc., Jackson, MS

Abstract

Modifying asphalt is a potentially high-value application for reusing waste plastics because of the high-volume usage of asphalt in highway construction. However, simply blending hot plastics and asphalt encounters difficulties related to the poor solubility of polymers, which limits the formation of a swollen network with asphalt molecules. The polymer phases also tend to coalesce and separate from asphalt during high-temperature storage in static conditions. The present study developed an innovative process to stabilize waste plastics in asphalt and improve binder storage stability by using lightly pyrolyzed crumb rubber together with a chemical compatibilizer. Both polymers were extruded to produce a thermoplastic elastomer (TPE) for asphalt modification. The mechanical performance and chemical reactions of TPEs were characterized via tension test and Fourier transform infrared spectroscopy. The storage stability and rheological properties of modified binder blends were evaluated through laboratory asphalt stability test and dynamic shear rheometer test. Polymer phases and network structures were characterized through optical microscopy. It was found that the pyrolyzed and reactive extrusion process improved the rubber solubility and polymer interaction, and therefore the storage stability of modified binder blends. The co-existence of rigid plastic and soft rubbery regimes in an entangled network provided a promising pathway to improve the mechanical performance of asphalt binders in both high- and low-temperature domains.

Funder

Advanced Manufacturing Office

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3