Real-Time Arterial-Friendly Ramp Metering System

Author:

Cheng Yao1ORCID,Chen Yen-Yu2,Chang Gang-Len1

Affiliation:

1. Department of Civil & Environmental Engineering, University of Maryland, College Park, MD

2. Department of Transportation & Logistics Management, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan

Abstract

To balance the benefits between the freeway and arterial users and also to prevent on-ramp queue spillbacks, the authors have developed an arterial-friendly local ramp metering control (AF-ramp) system for time-of-day operations during recurrent congestion. This study presents the real-time version of the AF-ramp (named RAF-ramp) system, with a lane-group-based macroscopic traffic module for predicting traffic state and for executing control strategies, aiming at maximizing the total throughput from the control area, comprising the ramp meter and nearby local intersection signals. Recognizing the discrepancy in the dynamic nature between ramp traffic and arterial flows, the RAF-ramp system with its embedded traffic state prediction and monitoring mechanism can trigger the concurrent optimization of both controls when justified to do so, or only dynamically adjust the ramp metering rate under the pre-optimized local signal environment. The results of extensive simulation experiments have confirmed that the proposed system outperforms the widely-applied real-time ramp control model, ALINEA/Q, under various experimental traffic scenarios, because the produced control strategies can effectively utilize the freeway’s weaving capacity and also best coordinate neighboring intersections’ signals to maximize the entire network’s performance. Such a real-time arterial-friendly ramp metering system, addressing both the time-varying freeway dynamics and the concerns of local traffic users, may well serve as an effective tool for contending with bottlenecks at freeway interchanges.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3