Assessing and Extending Track Quality Index for Novel Measurement Techniques in Railway Systems

Author:

Yan Tzu-Hao1,Corman Francesco1

Affiliation:

1. Institute for Transport Planning and Systems, ETH Zurich, Zurich, Switzerland

Abstract

A systematic maintenance process is essential to keeping railway systems safe and reliable. However, performing such maintenance is costly and often results in system disruption. There is a tradeoff between system safety and budgetary constraints; understanding the condition of the track infrastructure is essential to find the balance between needs and costs for decisions about when to perform maintenance. In this study, the track quality index (TQI), which is commonly used to evaluate the status of tracks and to decide maintenance interventions, is reviewed, including 12 TQIs for superstructure and six for substructure. A literature review indicates that TQIs for sleepers and subgrade have not yet been developed. The differences between TQIs are compared using a set of hypothetical raw data. Their capabilities for identifying track irregularities are also investigated based on the EN 13848 regulations. To classify TQI characteristics in a systematic way, this study proposes four concepts: accuracy, sensitivity, data required, and specificity. Accuracy indicates a TQI’s capability of detecting defects; sensitivity indicates how TQIs change according to variations in the defects; specificity relates to the amount of parameters considered, and the ability to pinpoint root causes or global consequences of defects. The results suggest a tradeoff between the four concepts, where high sensitivity can increase the ability to detect the smallest defects but may be affected by bias; more parameters considered may indicate low accuracy when detecting a single type of defect. Therefore, this study suggests railway regulators use multiple TQIs with complementary characteristics for classifying track status.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3