Modified Stackelberg Games Approach for Dynamic Signal Control and Route Choice Equilibrium on Mixed Networks

Author:

Yang Hang1,Wang Zhongyu2,Zou Yajie1,Wu Bing1,Wang Yinhai3

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China

2. College of Transport and Communications, Shanghai Maritime University, Shanghai, China

3. Department of Civil and Environmental Engineering, University of Washington, Seattle, WA

Abstract

The dynamic signal control and route choice equilibrium are usually integrated into a noncooperative game between the network authority and the road users. There are mainly two problems in most existing optimization methods. Firstly, the authority is often placed in the upper level in bi-level programming models, this pure system-optimization-oriented framework may increase the difficulty in obtaining an equilibrium flow distribution. Secondly, the rate of drivers’ compliance on the control strategy has not been fully investigated, which makes the problem intractable in real time, especially in a connected vehicle (CV) environment. This paper proposes a modified Stackelberg games model to change the format of the authority-user and user-authority dynamically. The direct communication between the authority and users is established, and the drivers’ compliance rate is applied as the level-change threshold index. Considering the difference between the drivers’ realized travel time and the predicted travel time on the variable message sign (VMS), a logit model is formed to calibrate the compliance rate in every time step. Based on a modified wavelet neural network algorithm, the model predictive control (MPC) fulfills the level-change procedure using the software Matlab 2018b. Six benchmarks are applied in a numerical example. The results show that the proposed model with the centralized framework obtains the minimum total travel cost compared with the benchmarks. Combined with the real-time mutual feedback between drivers’ response and control strategy, the level-change procedure potentially maintains the compliance rate within a certain level.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3