Design, Construction, and Preliminary Investigations of Otta Seal in Iowa

Author:

Gushgari Sharif Y.1,Zhang Yang1,Nahvi Ali1,Ceylan Halil2,Kim Sunghwan3,Arabzadeh Ali1,Jahren Charles T.1,Øverby Charles4

Affiliation:

1. Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA

2. Program for Sustainable Pavement Engineering & Research (PROSPER), Iowa State University, Ames, IA

3. Institute for Transportation, CCEE, Iowa State University, Ames, IA

4. Office for International Affairs, Norwegian Public Roads Administration, Oslo, Norway

Abstract

Faced with limited financial resources, pavement engineers constantly seek more durable and economical technologies for road preservations and rehabilitations. Consequently, there have been many efforts to study resurfacing strategies, including various types of sealing for local roads. Among different sealing methodologies, Otta seal is a technique that has not yet been sufficiently studied in the U.S.A. For this investigation, the first Otta seal site in the state of Iowa was constructed using a double-layer Otta seal design over 6.4 km of cracked asphalt pavement. Otta seal design and construction details are documented and discussed, and test sections using various aggregates are compared for performance. The key lesson learned was that proper aggregate selection within gradation limits and aggregate spread rates were critical factors for Otta seal performance. Otta seal capability for holding loose aggregate particles and for dust control were examined, and there were indications that excessive proportion of fine aggregate particles could lead to diminished performance associated with fugitive dust emissions and unbound aggregate particles. Although the Otta seal provided a smooth surface satisfying road user and agency requirements, it did not significantly add structural capacity to the existing asphalt pavement. The findings from this study will benefit road officials and other decision makers who need to consider alternatives for resurfacing distressed low-volume asphalt roads.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference23 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3