Automated Object Detection, Mapping, and Assessment of Roadside Clear Zones Using Lidar Data

Author:

Gouda Maged1ORCID,Arantes de Achilles Mello Bruno2ORCID,El-Basyouny Karim3ORCID

Affiliation:

1. Graduate Research Assistant, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada

2. Undergraduate Research Assistant, Department of Electrical and Computer Engineering, University of São Paulo, São Carlos, Brazil

3. Associate Professor and City of Edmonton’s Urban Traffic Safety Research Chair, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada

Abstract

This paper proposes a fully automated approach to map and assess roadside clearance parameters using mobile Light Detection and Ranging (lidar) data on rural highways. Compared with traditional manual surveying methods, lidar data could provide a more efficient and cost-effective source to extract roadside information. This study proposes a novel voxel-based raycasting approach focused primarily on automating roadside mapping and assessment. First, the scanning vehicle trajectory is extracted. Pavement surface points are then detected, and a method is proposed to extract pavement edge trajectories. Once pavement edges are extracted, guardrails were identified using a conical frustum emitted from the edge trajectory points. Target points and flexion points are then generated and located on the roadside, and a voxel-based raycasting approach is used to search for roadside obstacles and query their locations. Finally, roadside slopes and embankment heights were mapped at specific intervals, and roadside design guidelines and requirements were automatically checked against the mapping results. Noncompliant locations with substandard conditions were automatically queried. The method was tested on four highway segments in Alberta, Canada. The accuracy of the edge detection reached up to 98.5%. Furthermore, the method proved to be accurate in object detection, being able to detect all obstructions on the roadside in each tested segment. The proposed method can help transportation authorities automatically map and inventory roadside clearance parameters. Moreover, the safety performance of existing road infrastructure can be studied using collected information and crash data to support decision making on road maintenance and upgrades.

Funder

Natural Sciences and Engineering Research Council of Canada

Alberta Innovates

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3