Effect of Train-Driving Simulator Practice in the European Rail Traffic Management System: An Experimental Study

Author:

Olsson Niklas12ORCID,Lidestam Björn2ORCID,Thorslund Birgitta2

Affiliation:

1. Luleå University of Technology (LTU), Sweden

2. The Swedish National Road and Transport Research (VTI), Sweden

Abstract

Many European train drivers face major changes in their work with the introduction of the new train-protection system, the European Rail Traffic Management System (ERTMS), as information retrieval shifts from outside to in-cab, and a new rulebook is introduced. Therefore, many train drivers have to be educated in a short time, to make the transition safe and efficient. The purpose was to find out how a successful ERTMS practice can be designed in a physically low-fidelity but highly functional train-driving simulator. An experimental design was used, with 16 drivers divided into two groups: one group practiced in a simulator, and the other in reality. Standard training methodology was used, and the learning outcome was assessed by both measuring driving errors and via instructor evaluation of a simulator test. The drivers also filled in a questionnaire to capture how different factors, such as repeated practice, experience, and self-estimated confidence, correlate with performance. Results show that the simulator group committed significantly fewer driving errors and received significantly higher scores from the instructor. In addition, the simulator group's better performance is mostly caused by the possibility of repeated training of different special cases. The findings also imply that several of the more common special cases on the ERTMS can hardly be provoked in real train driving. Furthermore, this work strengthens the theory that novices can hardly estimate their own ability. Therefore, we argue that this type of low-fidelity simulator is well suited for research purposes, for practicing special cases, and for train operation companies to assess drivers’ skills.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3