Implementation of Cold In-Place Recycling with Expanded Asphalt Technology in Canada

Author:

Lane Becca1,Kazmierowski Tom1

Affiliation:

1. Pavements and Foundations Section, Materials Engineering and Research Office, Ministry of Transportation Ontario, 1201 Wilson Avenue, Downsview, Ontario M3M 1J8, Canada.

Abstract

Cold in-place recycling (CIR) is a pavement rehabilitation method that processes an existing hot-mix pavement, sizes it, mixes in additional asphalt cement, and lays it back down without off-site hauling and processing. The added asphalt cement is typically emulsified asphalt. A recent development in CIR technology is the use of expanded (foamed) asphalt rather than emulsified asphalt to bind the mix. This combination of CIR and expanded asphalt technologies is termed cold in-place recycled expanded asphalt mix (CIREAM). The Ministry of Transportation Ontario (MTO) constructed a CIREAM trial section on Highway 7 in July 2003. The 5-km CIREAM trial section was constructed adjacent to an 8-km section on which conventional CIR was performed. CIREAM placement resulted in a smooth, hard, uniform surface that provided an excellent platform for paving operations. The CIREAM placement progressed in a continuous and efficient manner, with 5 km placed over a 3-day period. Indirect tensile strength testing was carried out on both materials during construction. Falling weight deflectometer (FWD) testing and evaluation of pavement roughness and rutting by the use of MTO's automatic road analyzer (ARAN) were carried out. Resilient modulus testing of core samples of the CIR material and CIREAM was also carried out. The results of the FWD, ARAN, and resilient modulus tests indicated that the CIR and CIREAM pavements were performing similarly. A field review 1 year after construction showed no discernible distortion, rutting, or cracking. On the basis of short-term results, CIREAM appears to be an acceptable in-place recycling and rehabilitation strategy that provides an economical alternative to conventional CIR, reduces curing time, and extends the construction season.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference4 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3