Monitoring Pavement Changes in a Rehabilitation Project with Continuous Rolling Dynamic Deflectometer Profiles

Author:

Lee Jeffrey L. Y.1,Stokoe Kenneth H.1,Chen Dar-Hao2,Garrison Miles R.3,Nam Boo Hyun1

Affiliation:

1. Department of Civil Engineering, University of Texas at Austin, 1 University Station, C1792, Austin, TX 78712-0273.

2. Texas Department of Transportation, 4203 Bull Creek, No. 39, Austin, TX 78731.

3. Materials and Pavements, Construction Division, Atlanta District, Texas Department of Transportation, 701 East Main Street, Atlanta, TX 75551-1210.

Abstract

The success of a rehabilitation project that involves replacement of the asphalt concrete (AC) overlay on a concrete pavement often depends on the assessment of the existing conditions and the repair of critically weak locations. In a case study, a rolling dynamic deflectometer (RDD) was used to collect continuous deflection profiles at different stages in such a project. The project, conducted by the Texas Department of Transportation, was located in the Atlanta District. The condition of the pavement was monitored with an RDD in each stage. The stages ranged from before milling of the original AC overlay to 22 months after the placement of a new overlay. The deflection profiles measured after milling were used to identify locations with a high potential for reflection cracking. After the new overlay was placed, profiling was repeated at three different times to ( a) monitor changes at locations of previously high deflections, ( b) evaluate the effectiveness of full-depth repairs, and ( c) group different AC test sections of the new overlay according to the condition of the underlying concrete pavement. It was found that the continuous deflection profiles obtained at the start of a rehabilitation project can be used to identify high-deflection locations that, if not repaired, will likely deteriorate rapidly after the new overlay is placed. The continuous deflection profile measured on the concrete pavement after milling was particularly helpful in identifying high-deflection locations that were irregularly spaced. Continuous deflection profiles, measured at various times after placement of the new overlay, effectively tracked the zones of deterioration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference5 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3