Evaluation of the Performance of Expanded Polystyrene Block on the Reduction of the Deck Cracking in Wide Integral Abutment Bridge

Author:

Dahlberg Justin1ORCID,Phares Brent M.2,Liu Zhengyu3ORCID

Affiliation:

1. Bridge Engineering Center, Iowa State University, Ames, IA

2. Civil, Environmental and Construction Engineering, Iowa State University, Ames, IA

3. Bridge Engineering Center and Civil, Environmental and Construction Engineering Department, Iowa State University, Ames, IA

Abstract

Longitudinal joints are thought to provide relief from expansion and contraction of the bridge deck owing to temperature change, shrinkage, and live loads, especially for a wide bridge. Historically, however, these joints have been known to leak, allowing chloride-laden water to reach the bottom of the deck overhang and even the exterior girders. Research conducted by Phares et al. indicated that the development of cracking in bridge decks seems less dependent on the total width of the deck and more so on internal restraint of the abutment to temperature changes and, in particular, gradients. Based on the finite element method (FEM) results, an effective solution to reduce cracking in the deck might be to place an isolation pad between the soil and the back side of the abutment. The primary objective of this paper is to investigate the effectiveness of an isolation foam block at the back of an integral abutment in reducing the stress-induced strain and the deck end longitudinal and diagonal cracking near the end of the deck with an integral abutment. To achieve this objective, a highway bridge (Viking Road Bridge) in Iowa, US, designed with a width of 228 ft, was selected for the study. The bridge deck has no longitudinal joints but, based on the previous research results, it was equipped with thermal isolation pads behind the abutment. The newly constructed bridge was monitored for over two years, and this was followed by multiple bridge inspections. An analytical study was conducted to investigate the efficiency of the isolation foam on the bridge deck end structural behavior. The results indicated that the thermal isolation foam is effective in reducing the temperature gradient through the abutment thickness, especially on extremely cold days. By reducing the temperature difference between the abutment and the deck, a thermal isolation block is effective at reducing the deck end strain and resisting deck end cracking. The FEM results indicated that the maximum deck stress-induced strain was 46% greater without the effects of the thermal isolation block and greater than the concrete cracking strain. This indicated that, without the thermal isolation pad, the Viking Road Bridge could crack at the end of its deck.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference20 articles.

1. Design and Engineering Manual. DOT, Washington, D.C., 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3