Safety Effectiveness of Autonomous Vehicles and Connected Autonomous Vehicles in Reducing Pedestrian Crashes

Author:

Susilawati Susilawati1ORCID,Wong Wei Jie1ORCID,Pang Zhao Jian1

Affiliation:

1. Civil Engineering Department, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia

Abstract

This research aims to study the safety effectiveness of autonomous vehicles (AVs) and connected autonomous vehicles (CAVs) in reducing pedestrian crashes in various scenarios. The proposed methodology involves (1) identifying factors that contribute to pedestrian crashes, (2) developing crash-frequency models to predict the pedestrian crash and identifying the model that performs the best, (3) identifying the AV and CAV technologies that can minimize and remove those identified factors, and (4) assessing the effectiveness of AV and CAV technologies in reducing pedestrian crashes for various road classifications. Using crash data obtained from San Francisco Transportation Injury Mapping System (TIMS) for 2016 to 2020, a two-level Bayesian Poisson lognormal (TLBPL) model is developed to assess the effectiveness of AVs and CAVs in reducing pedestrian crashes. The outcomes of the TLBPL model suggest that weather, lighting, and road classifications tend to influence more vehicle–pedestrian crashes in all road classifications. The results of TLBPL indicate that driver faults related to prediction ability contribute more to pedestrian crashes for all road classifications, while driver fault related to sensing (perception) on urban arterials is the factor contributing most to pedestrian crashes. This paper provides a framework for researchers and engineers to evaluate AVs’ and CAVs’ safety effectiveness by considering crash contributing factors and road classifications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3