Catchment-Area Delineation Approach Considering Travel Purposes for Station-Level Ridership Prediction Task

Author:

Ma Chen1,Cheng Yanqiu1ORCID,Zhang Shuang1,Chen Kuanmin1,Wei Jie1ORCID,Hu Xianbiao2ORCID

Affiliation:

1. Department of Traffic Engineering, College of Transportation Engineering, Chang’an University, Xi’an, Shaanxi, China

2. Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA

Abstract

Station-catchment-area delineation is a key component of direct ridership models for urban rail-transport systems as it can determine the relationship between the urban-rail-transit station-level ridership and the variables within the station catchment area. The neglect of differences in the passenger-flow distribution for different travel purposes in previous studies has led to low accuracy of the obtained walk-to-station distances. Therefore, this paper proposes a station-catchment-area delineation method which is based on web map data to obtain accurate walk-to-station distances and considers differences in the distance thresholds and the ridership attraction intensity (RAI) for six travel purposes (corresponding to commercial, medical, residential, educational, administrative, and recreational land uses). In the case study, the ridership data of Xi’an Metro, the 2015 Xi’an Residential Travel Survey data, and the corresponding Gaode Map data are employed to extract passengers’ walking-distance distribution for several travel purposes to delineate the station catchment areas and build direct ridership models. Several geographically weighted regression (GWR) models are constructed to evaluate and examine the effects of the various station-catchment-area delineation methods on the model findings. The obtained results show that the proposed station-catchment-area delineation method significantly improves the ridership prediction performance compared with the traditional circular-buffer method, with the entry and exit ridership prediction accuracy improving by 3.57% and 6.65% on average, respectively. Finally, this study will guide transportation planners on how to delineate station catchment areas when constructing direct-demand models for urban rail stations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3