Enhanced Crash Frequency Models Using Surrogate Safety Measures from Connected Vehicle Fleet

Author:

Lee Taehun1ORCID,Rouphail Nagui2ORCID

Affiliation:

1. Transportation Research Division, Korea Expressway Corporation Research Institute, Gyeonggi-do, Republic of Korea

2. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC

Abstract

As connected vehicle data became available, efforts to employ surrogate safety measures (SSMs) for crash frequency modeling were undertaken. For road safety evaluation, traffic conflicts are quantitatively measured by various SSMs in two dimensions: spatial/temporal proximity (e.g., time-to-collision, TTC) and evasive action (e.g., deceleration rate, DR). However, a single SSM or a single dimension only represents partial images of the true severity of traffic conflicts. Therefore, this study investigates possible enhancements in crash frequency modeling by concurrently using proximity and evasion SSMs. For rear-end crash frequency estimation, five negative binomial regression models and two tree-based models (a regression tree and random forest) were developed. All models were estimated using crashes, traffic volume, and segment length, along with three SSMs (DR, TTC, and modified TTC) extracted from connected vehicle data in Ann Arbor, Michigan. Results show that the multi-SSM model produced a 19.3% reduction in mean absolute error (MAE) compared to the baseline model with no SSM variable, which was significantly higher than those of single-SSM models (4.5−6.9% reductions in MAE). Between all models, the random forest, which is the ensemble machine learning model, produced the highest error reductions (a 44.3% reduction in MAE). These findings show that the concurrent use of proximity and evasion SSMs can yield further enhancements in crash frequency models compared to the singular use of either type of SSM. The proposed modeling method can be used for proactive safety management and assessment using connected vehicle data collected over a short period.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3