Assessment of Factors Affecting Measurement Accuracy for High-Quality Weigh-in-Motion Sites in the Long-Term Pavement Performance Database

Author:

Haider Syed Waqar1,Masud Muhamad Munum1,Selezneva Olga2,Wolf Dean J.2

Affiliation:

1. Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI

2. Applied Research Associates, Inc., Transportation – Mid-Atlantic Division, Elkridge, MD

Abstract

Weigh-in-motion (WIM) is a primary technology used for monitoring and collecting vehicle weights and axle loads on roadways. Highway agencies collect WIM data for many reasons, including highway planning, pavement and bridge design, freight movement studies, motor vehicle enforcement, and regulatory studies. Therefore, the data collected at WIM systems must be accurate and represent actual field loadings. Several factors or field conditions can affect the WIM system accuracy (i.e., measurement error). The potential site-related factors include road geometry, pavement stiffness, pavement surface distresses, road roughness, and climate. The WIM calibration and equipment-related factors may include sensor type and array, calibration speed and speed points, and sensors’ age. The WIM data for Long-Term Pavement Performance (LTPP) research-quality sites were considered to estimate benchmark accuracies for different sensors and evaluate the effects of different factors on WIM measurement errors. These are the 35 sites with WIM calibration data that meet the ASTM E1318-09 error tolerances for Type I WIM systems and are consistently calibrated using the LTPP protocol with a complete set of supporting data about WIM site performance and WIM site conditions. The data for the LTPP research-quality sites showed that for the sensor arrays utilized, the best achievable total errors based on GVW are ±5% for load cell (LC), ±9% for bending plate (BP), and ±9.8% for the quartz piezo (QP) sensors. These accuracy levels for different sensor types provide highway agencies with the benchmark values demonstrating the practically achievable accuracy of WIM measurements after calibration for different WIM sensor types. Based on available data, WIM sensor accuracy can be significantly affected by climate, especially for QP and polymer piezo sensors. Also, the longitudinal roadway slope at a WIM site, sensor array, and speed points may significantly affect the WIM system accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3