YouTube as a Source of Information in Understanding Autonomous Vehicle Consumers: Natural Language Processing Study

Author:

Das Subasish1,Dutta Anandi2,Lindheimer Tomas3,Jalayer Mohammad4,Elgart Zachary5

Affiliation:

1. Texas A&M Transportation Institute, Texas A&M University System, College Station, TX

2. Computer Science and Engineering Department, Texas A&M University, College Station, TX

3. City of College Station, College Station, TX

4. Department of Civil and Environmental Engineering, Rowan University, Glassboro, NJ

5. Texas A&M Transportation Institute, Texas A&M University System, Houston, TX

Abstract

The automotive industry is currently experiencing a revolution with the advent and deployment of autonomous vehicles. Several countries are conducting large-scale testing of autonomous vehicles on private and even public roads. It is important to examine the attitudes and potential concerns of end users towards autonomous cars before mass deployment. To facilitate the transition to autonomous vehicles, the automotive industry produces many videos on its products and technologies. The largest video sharing website, YouTube.com, hosts many videos on autonomous vehicle technology. Content analysis and text mining of the comments related to the videos with large numbers of views can provide insight about potential end-user feedback. This study examines two questions: first, how do people view autonomous vehicles? Second, what polarities exist regarding (a) content and (b) automation level? The researchers found 107 videos on YouTube using a related keyword search and examined comments on the 15 most-viewed videos, which had a total of 60.9 million views and around 25,000 comments. The videos were manually clustered based on their content and automation level. This study used two natural language processing (NLP) tools to perform knowledge discovery from a bag of approximately seven million words. The key issues in the comment threads were mostly associated with efficiency, performance, trust, comfort, and safety. The perception of safety and risk increased in the textual contents when videos presented full automation level. Sentiment analysis shows mixed sentiments towards autonomous vehicle technologies, however, the positive sentiments were higher than the negative.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference32 articles.

1. Naturally Occurring Peer Support through Social Media: The Experiences of Individuals with Severe Mental Illness Using YouTube

2. Future Autonomous Vehicle Driver Study. Kelly Blue Book. 2018. https://mediaroom.kbb.com/future-autonomous-vehicle-driver-study. Accessed Feb 28, 2019.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3