Demand-Responsive Transit Service With Soft Time Windows Considering Real-Time Disruptions Based on Bounded Rationality

Author:

Wang Hongfei1ORCID,Guan Hongzhi1,Qin Huanmei1,Guo Jun1ORCID

Affiliation:

1. Faculty of Urban Construction, Beijing University of Technology, Beijing, China

Abstract

Demand-responsive transit (DRT) with smartphone-based applications is emerging as a flexible and sustainable mobility service, transforming urban transportation. Nevertheless, to satisfy the real-time and inconsistent demand, it is becoming increasingly important to capture the decision-making psychology of order cancellations. In this study, a two-phase optimization framework is presented in response to real-time disruptions, including order cancellations and the insertion of new real-time passengers. In contrast to random real-time demand, this paper is more concerned about the impacts of the feedback information on order cancellations. Bounded rationality is incorporated into the model to discuss the decision-making process of cancellation behaviors. With regard to the soft window, a compensation strategy is proposed to promote the profit while encouraging passengers for a long-term use. Additionally, solution algorithm based on variable neighborhood search (VNS) and rolling horizon is constructed to approach the Pareto solutions set. To testify the validity of the proposed algorithm, small-scale experiments in simplified Sioux Falls network are investigated for multiple runs. Meanwhile, a real-world case study in Beijing is explored to evaluate the system performance considering real-time disruptions. The results indicate that the dynamic DRT service can substantially improve the system profit but increase the penalty cost. The profit presents a significant improvement to 940 (renminbi) RMB as a result of the insert of real-time passengers. This study, therefore, not only provides a deeper insight into the analysis of passenger cancellation behavior but also contributes to construct a more flexible DRT service.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3