Curbside Parking Monitoring With Roadside LiDAR

Author:

Chen Zhihui1ORCID,Xu Hao1ORCID,Zhao Junxuan2ORCID,Liu Hongchao3ORCID

Affiliation:

1. Civil and Environmental Engineering, University of Nevada, Reno, NV

2. Center for Urban Informatics and Progress, University of Tennessee, Chattanooga, TN

3. Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX

Abstract

Cities worldwide are striving to find more efficient approaches to address the prevalent parking challenges in urban areas. A key aspect of achieving an optimal parking environment is the collection of curbside parking data, which enables informed decision-making and effective management of on-street parking spaces. This study proposes a solution for curbside parking monitoring and data collection using roadside LiDAR systems. By leveraging laser beam variation detection, this solution can extract essential information about parking usage. Unlike existing solutions, such as imagery or embedded sensor-based monitoring, our solution offers portability and ease of deployment for short-term or long-term curbside parking data collection. Additionally, the LiDAR sensor captures only three-dimensional data and is independent of illumination conditions, ensuring stable operation throughout the day while safeguarding privacy by not capturing imagery. These features align with the requirements of city agencies for parking data collection. The workflow follows a simple trend without the need for complex training, as typically seen in machine learning-based methods, and instead relies on parameter tuning based on real-world environmental factors. To validate the effectiveness of our method, we collected curbside parking data for five days at a midtown traffic junction with eight parking spaces. Manual validation confirmed a 95% match between identified parking events and observed data across different time periods. The study further presents parking statistics based on the identified events, revealing crucial insights about parking usage in the study area.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3