Classification of Driver Cognitive Load: Exploring the Benefits of Fusing Eye-Tracking and Physiological Measures

Author:

He Dengbo1ORCID,Wang Ziquan1,Khalil Elias B.1ORCID,Donmez Birsen1ORCID,Qiao Guangkai1,Kumar Shekhar1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada

Abstract

In-vehicle infotainment systems can increase cognitive load and impair driving performance. These effects can be alleviated through interfaces that can assess cognitive load and adapt accordingly. Eye-tracking and physiological measures that are sensitive to cognitive load, such as pupil diameter, gaze dispersion, heart rate (HR), and galvanic skin response (GSR), can enable cognitive load estimation. The advancement in cost-effective and nonintrusive sensors in wearable devices provides an opportunity to enhance driver state detection by fusing eye-tracking and physiological measures. As a preliminary investigation of the added benefits of utilizing physiological data along with eye-tracking data in driver cognitive load detection, this paper explores the performance of several machine learning models in classifying three levels of cognitive load imposed on 33 drivers in a driving simulator study: no external load, lower difficulty 1-back task, and higher difficulty 2-back task. We built five machine learning models, including k-nearest neighbor, support vector machine, feedforward neural network, recurrent neural network, and random forest (RF) on (1) eye-tracking data only, (2) HR and GSR, (3) eye-tracking and HR, (4) eye-tracking and GSR, and (5) eye-tracking, HR, and GSR. Although physiological data provided 1%–15% lower classification accuracies compared with eye-tracking data, adding physiological data to eye-tracking data increased model accuracies, with an RF classifier achieving 97.8% accuracy. GSR led to a larger boost in accuracy (29.3%) over HR (17.9%), with the combination of the two factors boosting accuracy by 34.5%. Overall, utilizing both physiological and eye-tracking measures shows promise for driver state detection applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3