Exploring Individual Activity-Travel Patterns Based on Geolocation Data from Mobile Phones

Author:

Yin Biao1ORCID,Leurent Fabien2ORCID

Affiliation:

1. LVMT, UMR-T 9403, Ecole des Ponts ParisTech, Univ Gustave Eiffel, Champs-sur-Marne, France

2. Centre International de Recherche sur l’Environnement et le Développement, Ecole des Ponts ParisTech, Nogent-sur-Marne, France

Abstract

Data mining techniques can extract useful activity and travel information from large-scale data sources such as mobile phone geolocation data. This paper aims to explore individual activity-travel patterns from samples of mobile phone users using a two-week geolocation data set from the Paris region in France. After filtering the data set, we propose techniques to identify individual stays and activity places. Typical activity places such as the primary anchor place and the secondary place are detected. The daily timeline (i.e., activity-travel program) is reconstructed with the detected activity places and the trips in-between. Based on user-day timelines, a three-stage clustering method is proposed for mobility pattern analysis. In the method framework, activity types are first identified by clustering analysis. In the second stage, daily mobility patterns are obtained after clustering the daily mobility features. Activity-travel topologies are statistically investigated to support the interpretation of daily mobility patterns. In the last stage, we analyze statistically the individual mobility patterns for all samples over 14 days, measured by the number of days for all kinds of daily mobility patterns. All individual samples are divided into several groups where people have similar travel behaviors. A kmeans++ algorithm is applied to obtain the appropriate number of patterns in each stage. Finally, we interpret the individual mobility patterns with statistical descriptions and reveal home-based differences in spatial distribution for the grouped individuals.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference2 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3