Use of Fiber-Reinforced Self-Consolidating Concrete to Enhance Serviceability Performance of Damaged Beams

Author:

Abdulhameed Haider A.12,Nassif Hani1,Khayat Kamal H.3

Affiliation:

1. Rutgers Infrastructure Monitoring and Evaluation (RIME) Group, The State University of New Jersey, Department of Civil and Environmental Engineering, Piscataway, NJ

2. Building and Construction Engineering Department, University of Technology, Baghdad, Iraq

3. RE-CAST Tier I University Transportation Center (UTC), Center for Infrastructure Engineering Studies, Rolla, MO

Abstract

The use of fiber-reinforced self-consolidating concrete (FR-SCC) in repairing damaged concrete beams has been evaluated. An experimental program was conducted to design and test key fresh and hardened properties of SCC and FR-SCC mixtures. The designed FR-SCC mixtures included two types of supplementary cementitious materials (silica fume (SF) and slag (SL)) and two types of fibers (steel fiber (STF) and polypropylene fiber (PPF)) were used. To ensure good workability to repair congested areas, the optimized volume fractions of the STF were 0.25% and 0.50% compared with 0.10%, 0.15%, and 0.20% for the PPF. In addition, the flexural behavior of 10 beam specimens was investigated. The main reinforcement for the control beams consisted of #5 reinforcing bars, while the main reinforcement for the repaired beams was either #4 or #3 reinforcing bars that were introduced to simulate 35% and 65% reduction of the bar areas, respectively, due to corrosion. The results demonstrate that the optimized FR-SCC mixtures are effective repair materials and can develop adequate bond strength to existing concrete. The flexural test results showed that the repair mixtures were able to increase the cracking load for the repaired beams compared with the control beams. Such an increase is expected to contribute to extending the life of the damaged member or structure at the service load level. This paper also presents a comparison of the predicted values for the first-crack load strength using the ACI 544 code equation with the experimental data. Results showed that the code equation provides safe prediction.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3