Study on Thermal Reflective Cracking of Asphalt Concrete Overlays on Concrete Pavements Under Moderate Temperature Variations Using Finite Element Model

Author:

Jiao Liya1ORCID,Harvey John T.1,Wu Rongzong1ORCID,Deng Hanyu1

Affiliation:

1. University of California Pavement Research Center, Department of Civil and Environmental Engineering, University of California, Davis, CA

Abstract

This study investigated the effects of moderate daily temperature variations on reflective cracking in asphalt concrete (AC) overlays on Portland cement concrete (PCC) pavements using three-dimensional (3D) finite element (FE) modeling. The FE model consists of an AC overlay on top of PCC slabs, followed by aggregate base and subgrade. The year-round temperature variations were divided into discrete groups using a clustering technique and each group was applied separately in the FE model. The maximum stress and strain values associated with each temperature variation group were determined using the FE model and used as the driving force corresponding to the thermally induced damage in the AC overlay. The results show that the maximum stress and strain values in the overlay depend on the hourly temperature variation as well as the seasonal temperature profile. The daily temperature variation controls the deformation of the underlying PCC slabs, whereas the seasonal temperature profile determines the viscoelastic properties of the AC overlay. The estimated maximum tensile stress and strain values suggest that the AC overlay is primarily subjected to damage from repetitive thermal loading instead of one-time fracture events for moderate temperature variations. In addition, when the AC overlay is fully bonded to the PCC slabs, the thermal strains are much greater than the traffic induced strains, indicating a high possibility of thermal reflective cracking being the dominant damage mechanism for these cases.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3