Affiliation:
1. Department of Civil and Chemical Engineering, University of Tennessee, Chattanooga, TN
2. Center for Sustainable Mobility, Virginia Tech Transportation Institute, Blacksburg, VA
Abstract
Distracted driving (i.e., engaging in secondary tasks) is an epidemic that threatens the lives of thousands every year. Data collected from vehicular sensor technologies and through connectivity provide comprehensive information that, if used to detect driver engagement in secondary tasks, could save thousands of lives and millions of dollars. This study investigates the possibility of achieving this goal using promising deep learning tools. Specifically, two deep neural network models (a multilayer perceptron neural network model and a long short-term memory networks [LSTMN] model) were developed to identify three secondary tasks: cellphone calling, cellphone texting, and conversation with adjacent passengers. The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) time series data, collected using vehicle sensor technology, were used to train and test the model. The results show excellent performance for the developed models, with a slight improvement for the LSTMN model, with overall classification accuracies ranging between 95 and 96%. Specifically, the models are able to identify the different types of secondary tasks with high accuracies of 100% for calling, 96%–97% for texting, 90%–91% for conversation, and 95%–96% for the normal driving. Based on this performance, the developed models improve on the results of a previous model developed by the author to classify the same three secondary tasks, which had an accuracy of 82%. The model is promising for use in in-vehicle driving assistance technology to report engagement in unlawful tasks or alert drivers to take over control in level 1 and 2 automated vehicles.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献