Exploratory Analysis of Real-Time E-Scooter Trip Data in Washington, D.C.

Author:

Zou Zhenpeng1,Younes Hannah2,Erdoğan Sevgi3,Wu Jiahui4

Affiliation:

1. Department of Urban Studies and Planning, School of Architecture, Planning and Preservation, University of Maryland College Park, College Park, MD

2. Department of Geographical Sciences, College of Behavioral & Social Sciences, University of Maryland College Park, College Park, MD

3. Transportation Policy Research Group, National Center for Smart Growth Research and Education, University of Maryland, College Park, MD

4. College of Information Studies, University of Maryland College Park, College Park, MD

Abstract

The proliferation of micromobility, evolving from station-based to dockless bikeshare programs, has dramatically accelerated since 2017 with an influx of investment from the private sector to a new product, dockless e-scooter share. As an alternative to pedal bikes, e-scooters have become widespread across the U.S.A. owing to the unprecedented convenience they bring to commuters and travelers with electric-power propulsion and freedom from docking stations. In cities like Washington, D.C., e-scooter share can play an important role to support transportation sustainability and boost accessibility in less-connected communities. This study takes advantage of publicly available but not readily accessible e-scooter share data in Washington, D.C. for an initial view of the travel patterns and behaviors related to this new mode. The study adopted an innovative approach to scrape and process general bikeshare feed specification data in real time for e-scooters. Not only locational time series data, but also e-scooter share trip trajectories were generated. The trip trajectory data provide a unique opportunity to examine travel patterns at the street link level—a level of analysis that has not been reached before for e-scooter share to the authors’ knowledge. The paper first provides descriptive statistics on e-scooter share trips, followed by an exploratory analysis of trip trajectories conjoined with street link level features. Important insights on e-scooter route choice are derived. Lastly, policy and regulatory implications in relation to e-scooter facility design and safety risks are discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3