Heuristic for Railway Crew Scheduling With Connectivity of Schedules

Author:

Bansal Akshat1ORCID,Anoop Kezhe Perumpadappu1ORCID,Rangaraj Narayan1ORCID

Affiliation:

1. Indian Institute of Technology Bombay, Mumbai, Maharashtra, India

Abstract

This paper addresses the crew scheduling for long-distance passenger train services. A heuristic with bin packing features is developed to generate repeatable crew schedules that satisfy the operational and crew allocation rules. By ensuring the connectivity of crew duties that can be repeated over periodic train schedules, a better estimate of the crew requirement in a region is also obtained. Further, the heuristic ensures a fair division of the total workload and creates long duty cycles, which also makes the process of cyclic rostering easier. The paper also presents an exact approach for crew scheduling using a combination of constraint programming and set covering formulations. The exact approach is not computationally viable for practical scale problem instances, but the heuristic generates good quality solutions (often very close to optimal) even on large data sets. We illustrate the approach on data from the Mumbai Division in Indian Railways and the computational results show that there is potential to reduce the total number of crew duties in the region by around 12%. The heuristic approach provides an efficient way to generate improved crew schedules every time there is a change in the train timetable.

Funder

Ministry of Education, Government of India and Indian Institute of Technology Bombay

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3