Real-Time Intersection Turning Movement Flow Forecasting Using a Parallel Bidirectional Long Short-Term Memory Neural Network Model

Author:

Zhang Ce1ORCID,Pan Guangyuan12ORCID,Fu Liping1ORCID

Affiliation:

1. Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada

2. School of Automation and Electrical Engineering, Linyi University, Linyi, China

Abstract

Real-time forecasting of intersection turning movements is a critical requirement for predictive traffic signal control at signalized intersections. Several traffic flow forecasting models have been developed in the past; however, most of them have focused only on the road segment-level traffic instead of the turning movement flow (TMF) at intersections. Therefore, in this paper, we propose a new TMF forecasting model, which consists of a combination of two neural network models, namely the stacked bidirectional long short-term memory and the traditional multi-layer perceptron model; this combination will enable effective learning for both short- and long-term time-varying patterns. Moreover, extensive computational experiments, using two years of turning movement counts at 22 intersections in the city of Milton, Ontario, Canada, explore the performance advantage of the proposed model in comparison with several state-of-the-art base models for forecasting accuracy, robustness, and transferability.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning based Framework for Option Price Forecasting;2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST);2024-05-15

2. A Parallel Hybrid Deep Learning Model for Turning Movement Flow Prediction;2023 China Automation Congress (CAC);2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3