Analysis of Asphalt Oxidation by Means of Accelerated Testing and Environmental Conditions

Author:

Villegas-Villegas Rafael E.1,Baldi-Sevilla Alejandra1,Aguiar-Moya José Pablo1,Loria-Salazar Luis1

Affiliation:

1. National Laboratory of Materials and Structural Models (LanammeUCR), University of Costa Rica, San José, Costa Rica

Abstract

The chemical changes that occur to asphalt with oxidation include an increase in oxygen content, as well as the unsaturation of the molecules. This change raises the polarity and stiffness of the material. As a consequence, the elastic response increases, altering its rheology. These transformations are essential to determine pavement performance during its service life. However, the characterization of these chemical and rheological processes cannot be completed because of the inefficiency of current procedures that simulate asphalt oxidation. For this reason, the objective of this study is to characterize asphalt oxidation fundamentally and to relate the observed changes in the materials’ mechanical response. To achieve this goal, a representative group of asphalt samples has been exposed to environmental oxidation, and alternatively to thermal and ultraviolet aging in the laboratory. The samples were characterized chemically and rheologically before the start of the experiment. It was possible to find a correlation between the content of specific chemical species in the material and their mechanical behavior at low and intermediate temperatures. In addition, the present study helps to understand the oxidation phenomena, and helps verify the ineffectiveness of traditional aging techniques, so that they can be modified to simulate the environmental process better.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3