Investigation of the Impact on Throughput of Connected Autonomous Vehicles with Headway Based on the Leading Vehicle Type

Author:

Martin-Gasulla Marilo1,Sukennik Peter2,Lohmiller Jochen2

Affiliation:

1. Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL

2. PTV Group, Karlsruhe, Germany

Abstract

Although the future era of autonomous driving is seen as a solution for many of the current problems in traffic; the introductory phase, with low penetration rates of connected-autonomous vehicles (CAVs), might lead to lower capacities. This forecast is based on certain assumptions that the CAVs can operate more efficiently when communicating and cooperating—already proved in real tests—therefore in practice, they can keep smaller following headways. However, it is envisioned that they might keep larger headways to other conventional vehicles for safety reasons. Lower connected-autonomous vehicle (CAV) penetration rates lead to a reduction in the overall vehicle throughput, then with increasing penetration rates, throughput is recovered and eventually improved. Simulations demonstrate that the impact on vehicle throughput depends on the car following headway and penetration rate. Based on this potential reduction in the maximum throughput for low penetration rates, the aim of this paper is the mitigation of this phenomenon at urban intersections through a possible managing solution to sort CAVs and a pre-set green-time start. A microsimulation model has been calibrated using PTV Vissim to reflect this operating solution, using new possibilities as leading vehicle class dependent headway settings and formula-based routing for sorting vehicles at a two-lane intersection entry. This approach allows the formation of platoons at intersections and uses their effectiveness even at low CAV penetration rates. The tested scenario is simplified to through traffic without turnings maneuvers and the results show that the potential loss in throughput is canceled and reductions in the control delay can reach 17% for oversaturated conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3