Classification of Impact Echo Signals Using Explainable Deep Learning and Transfer Learning Approaches

Author:

Torlapati Rahul1,Azari Hoda2ORCID,Shokouhi Parisa3ORCID

Affiliation:

1. Genex Systems, Turner-Fairbank Highway Research Center, Mclean, VA

2. Nondestructive Evaluation Program and Laboratory, U.S. Department of Transportation, Turner-Fairbank Highway Research Center, Mclean, VA

3. Engineering Science and Mechanics Department, Pennsylvania State University, University Park, PA

Abstract

Impact echo (IE) is one of the most frequently used nondestructive evaluation (NDE) techniques for detecting subsurface defects such as delamination, honeycombing, and voids in concrete structures. In the conventional analysis of IE data, the time-domain signal is transformed into the frequency domain and the frequency content is used to estimate the presence and nature of the defect. Machine learning (ML) has been recently applied to the IE signal classification problem. However, because of the scarcity of labeled IE datasets, most existing work relies on relatively small training and test datasets without addressing the generalizability and transferability of the developed models. In this paper, we compare two approaches for automatic classification of IE signals: clustering based on expert-crafted features and deep learning (DL) from automatically extracted features. Next, we use the knowledge gained from a DL model trained on concrete specimens with available ground truth to make predictions about defects in a different specimen with completely different construction and characteristics (transfer learning). Finally, we examine our DL model to gain insights into the model working (explainability) and highlight the attributions that are significant in classifying a particular IE signal. Our findings demonstrate the utility of ML and DL for IE signal classification, but also highlight the need for high-quality labeled datasets for advancing ML and DL in NDE data analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3