CitySim: A Drone-Based Vehicle Trajectory Dataset for Safety-Oriented Research and Digital Twins

Author:

Zheng Ou1ORCID,Abdel-Aty Mohamed1ORCID,Yue Lishengsa12ORCID,Abdelraouf Amr1ORCID,Wang Zijin1ORCID,Mahmoud Nada1ORCID

Affiliation:

1. Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, FL

2. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai, China

Abstract

The development of safety-oriented research and applications requires fine-grain vehicle trajectories that not only have high accuracy, but also capture substantial safety-critical events. However, it would be challenging to satisfy both these requirements using the available vehicle trajectory datasets do not have the capacity to satisfy both. This paper introduces the CitySim dataset that has the core objective of facilitating safety-oriented research and applications. CitySim has vehicle trajectories extracted from 1,140-min of drone videos recorded at 12 locations. It covers a variety of road geometries including freeway basic segments, weaving segments, expressway merge/diverge segments, signalized intersections, stop-controlled intersections, and control-free intersections. CitySim was generated through a five-step procedure that ensured trajectory accuracy. The five-step procedure included video stabilization, object filtering, multivideo stitching, object detection and tracking, and enhanced error filtering. Furthermore, CitySim provides the rotated bounding box information of a vehicle, which was demonstrated to improve safety evaluations. Compared with other video-based trajectory datasets, CitySim had significantly more safety-critical events, including cut-in, merge, and diverge events, which were validated by distributions of both minimum time-to-collision and minimum post encroachment time. In addition, CitySim had the capability to facilitate digital-twin-related research by providing relevant assets, such as the recording locations’ three-dimensional base maps and signal timings.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep spatial‐temporal embedding for vehicle trajectory validation and refinement;Computer-Aided Civil and Infrastructure Engineering;2024-01-30

2. Insights into vehicle conflicts based on traffic flow dynamics;Scientific Reports;2024-01-17

3. Learning eco-driving strategies from human driving trajectories;Physica A: Statistical Mechanics and its Applications;2024-01

4. Spatiotemporal-restricted A* algorithm as a support for lane-free traffic at intersections with mixed flows;Green Energy and Intelligent Transportation;2024-01

5. A unified modeling framework for lane change intention recognition and vehicle status prediction;Physica A: Statistical Mechanics and its Applications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3