Affiliation:
1. Department of Civil and Environmental Engineering, Utah State University, Logan, UT
Abstract
Battery electric buses (BEBs) are increasingly being embraced by transit agencies as an energy-efficient and emission-free alternative to bus fleets. However, because of the limitations of battery technology, BEBs suffer from limited driving range, great battery cost, and time-consuming charging processes. On-route fast charging technology is gaining popularity as a remedy, reducing battery cost, extending driving range, and reducing charging time. With on-route fast charging, BEBs are as capable as their diesel counterparts in relation to range and operating time. However, transit agencies may have the following concerns about on-route fast charging: 1) on-route fast charging stations require massive capital costs; 2) on-route fast charging may lead to high electricity power demand charges; and 3) charging during peak hours may increase electricity energy charges. This study conducts a quantitative economic analysis of on-route fast charging for BEBs, thereby providing some guidelines for transit agencies. An integrated optimization model is first proposed to determine battery size, charger type, and recharging schedule for a general BEB route. Based on the model, an economic analysis of on-route fast charging is then performed on 10 real-world bus routes and a simplified general bus route with different parameters. The results demonstrate that given the current prices of on-route fast charging stations and batteries, it is always beneficial to install on-route fast charging stations for BEBs. A sensitivity analysis is also conducted to show the impact of potential price reductions of batteries.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献