Deep Learning-Based Lane Marking Detection using A2-LMDet

Author:

Lin Chunmian1,Li Lin1,Cai Zhixing1,Wang Kelvin C. P.2,Xiao Danny3,Luo Wenting1,Guo Jian-gang1

Affiliation:

1. Department of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China

2. Department of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK

3. Department of Civil and Environmental Engineering, University of Wisconsin-Platteville, Platteville, WI

Abstract

Automated lane marking detection is essential for advanced driver assistance system (ADAS) and pavement management work. However, prior research has mostly detected lane marking segments from a front-view image, which easily suffers from occlusion or noise disturbance. In this paper, we aim at accurate and robust lane marking detection from a top-view perspective, and propose a deep learning-based detector with adaptive anchor scheme, referred to as A2-LMDet. On the one hand, it is an end-to-end framework that fuses feature extraction and object detection into a single deep convolutional neural network. On the other hand, the adaptive anchor scheme is designed by formulating a bilinear interpolation algorithm, and is used to guide specific-anchor box generation and informative feature extraction. To validate the proposed method, a newly built lane marking dataset contained 24,000 high-resolution laser imaging data is further developed for case study. Quantitative and qualitative results demonstrate that A2-LMDet achieves highly accurate performance with 0.9927 precision, 0.9612 recall, and a 0.9767 [Formula: see text] score, which outperforms other advanced methods by a considerable margin. Moreover, ablation analysis illustrates the effectiveness of the adaptive anchor scheme for enhancing feature representation and performance improvement. We expect our work will help the development of related research.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3