Correlating Laboratory Conditioning with Field Aging for Asphalt using Rheological Parameters

Author:

Zhang Runhua1,Sias Jo E.1,Dave Eshan V.1

Affiliation:

1. University of New Hampshire, Durham, NH

Abstract

Aging has a significant effect on performance of asphalt materials. Reliable characterization of asphalt binder properties with aging is crucial to improving asphalt binder specifications as well as modification and formulation methods. The objective of this study is to correlate the laboratory conditioning methods with field aging using evolution of binder rheological parameters with time and pavement depth. Loose mixtures are aged in the lab (5 and 12 days aging at 95°C, and 24 h at 135°C) and recovered binder rheological properties are compared with those from different layers of field cores. The virgin binder results with 20 h pressure aging vessel (PAV) aging are also included. Binder testing is conducted using a dynamic shear rheometer with a 4 mm plate over a wide range of frequencies and temperatures. Rheological parameters calculated from the master curves, performance grade system, and binder Christensen–Anderson–Marasteanu model are used to evaluate changes with aging. The field aging gradient is evaluated, and the laboratory conditioning durations corresponding with the field aging durations at different pavement depths are calculated. The results show that 5 days of aging can simulate around 8 years of field aging (in New Hampshire) for the top 12.5 mm pavement, and 12 days’ aging can simulate approximately 20 years; 20 h PAV binder aging is not adequate to capture the long-term performance of the pavement. This study provides a way to optimize the laboratory conditioning durations and evaluate the performance of asphalt material with respect to pavement life (time) and depth (location) within the pavement structure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3