Long-Term Stability of High-Speed Railway Geosynthetic Reinforced Pile-Supported Embankment Subjected to Traffic Loading Considering Arching Effect

Author:

Bi Zongqi1,Gong Quanmei1,Huang Jiandan1

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China

Abstract

Geosynthetic reinforced pile-supported (GRPS) embankment is widely used in the construction of high-speed railways on soft foundations. Arching effect, which is a common phenomenon in the system involving soil-structure interaction, is considered a key factor in the design of GRPS embankment. Its performance has been found inevitably to affect the post-construction settlement and bearing capacity of the embankment. However, the existing design methods are mainly based on static loading condition; soil arching effect under high-cycle loading has not been fully understood. In this study, a series of numerical simulations were conducted to study the long-term behavior of GRPS embankment under traffic loading, with the consideration of arching effect in soil. An implicit–explicit transition calculation algorithm was implemented to predict the permanent deformation under high-cycle traffic loading through the data transfer and conversion between implicit and explicit numerical stages, in which the mixed “implicit” and “explicit” calculation strategy were carried out based on the high-cycle accumulation (HCA) model. By using the proposed algorithm, a cross-section of high-speed railway GRPS embankment was selected as a case for discussion. Results indicate that the affected areas of stress concentration over piles in the embankment are reduced under traffic loading. With different levels of stability, the variation of stress concentration ratio of the arching effect can be mainly classified into three groups: stable, gradually weakened, and destroyed. Through parameter study, the effect of subsoil stiffness is discussed and a reasonable modulus ratio between pile and subsoil is suggested for the design reference.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3