Assessing the Predictive Value of Traffic Count Data in the Imputation of On-Street Parking Occupancy in Amsterdam

Author:

Martín Calvo Pablo1ORCID,Schotten Bas2ORCID,Dugundji Elenna R.34ORCID

Affiliation:

1. University of Amsterdam, Amsterdam, The Netherlands

2. City of Amsterdam, The Netherlands

3. Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

4. Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

Abstract

On-street parking policies have a huge impact on the social welfare of citizens. Accurate parking occupancy data across time and space is required to properly set such policies. Different imputation and forecasting models are required to obtain this data in cities that use probe vehicle measurements, such as Amsterdam. In this paper, the usage of traffic data as an explanatory variable is assessed as a potential improvement to existing parking occupancy prediction models. Traffic counts were obtained from 164 traffic cameras throughout the city. Existing models for predicting parking occupancy were reproduced in experiments with and without traffic data, and their performance was compared. Results indicated that (i) traffic data are indeed a useful predictor and improves performance of existing models; (ii) performance does not improve linearly with an increase in the number of counting points; and (iii) placement of the cameras does not have a significant impact on performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference12 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3