Geosynthetic Reinforced Fill Material for Tennessee Bridge Approach Slab Support

Author:

Imseeh Wadi H.1ORCID,Alshibli Khalid A.1,Abu-Farsakh Murad Y.2ORCID,Kniazewycz Ted A.3ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN

2. Department of Civil and Environmental Engineering, Louisiana Transportation Research Center (LTRC), Louisiana State University, Baton Rouge, LA

3. Tennessee Department of Transportation, Nashville, TN

Abstract

The approach slab is constructed at bridge ends to serve as a smooth transition from the highway pavement to the bridge deck. However, motorists usually complain about a sudden change in elevation (bump) at the highway/approach slab (H/S) joint that causes a potential hazard for public safety, damage to vehicles, and rider discomfort. This paper develops a finite element (FE) analysis for the differential settlement at the H/S joint when supported by a strip footing that sits on compacted layers of soil embankment with uniaxial geogrid reinforcement. A parametric study was conducted to select the optimum design that consists of five geogrid layers equally spaced within a depth of 2 [Formula: see text] below the strip footing, where [Formula: see text] is the width of the footing. The inclusion of geogrid reinforcement did not only enhance the ultimate bearing stress of the strip footing but also redistributed the vertical loads over a wider region of soil embankment and thus reduced settlement. A case study is also presented for modeling the performance of a preliminary design proposed by Tennessee Department of Transportation (TDOT) for the retrofit of bridge ends. The FE analysis showed a 30%–40% improvement in the ultimate bearing stress of the strip footing when the geogrid reinforcement proposed by TDOT is extended to a depth of 1.5 [Formula: see text] below the footing.

Funder

The State Research and Planning (SPR) Program by the Tennessee Department of Transportation (TDOT) and Federal Highway Administration

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bridge Approach Settlement and its Mitigation Schemes: A Review;Transportation Research Record: Journal of the Transportation Research Board;2024-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3