Concurrent Progression of Through and Turning Movements for Arterials Experiencing Heavy Turning Flows and Bay-Length Constraints

Author:

Chen Yen-Hsiang1,Cheng Yao1,Chang Gang-Len1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Maryland, College Park, MD

Abstract

Contending with congestion on major urban arterials by providing progression bands has long been a priority task for the traffic community. However, on an arterial experiencing heavy left-turn volumes at major intersections, the left-turn queue may spill back rapidly and further degrade the effectiveness of the through progression band if the left-turn volume and the limited bay length have not been accounted for in the optimization of signal coordination plan. Such negative impact from left-turn queues also justifies the need to take into account the concurrent progression of through and left-turn flows on major arterials. To address these two issues, this paper presents a three-staged signal optimization model that can circumvent or minimize the impact of left-turn spillback to the through movements and concurrently minimize the delay of left-turn flows. The proposed model firstly obtains an initial maximized bandwidth from an existing state-of-the-art method and then maximizes the portion of through bandwidth not impeded by the left-turn overflows. The delay of left-turn flows at each intersection will also be minimized under the obtained effective through bandwidth. The results from the numerical analyses have confirmed the benefits and need of including the left-turn volume and its bay length in the design of dual progression for through and left-turn movements. The simulation experiments further show a reduction in the average delay and the number of stops, by 6.4% and 5.5%, respectively, for vehicles traversing an arterial segment of six intersections, compared with the state-of-the-art model, MULTIBAND.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Arterial Traffic Signal Settings: Shotgun Version for Simultaneous Perturbation Stochastic Approximation Approach;2023 Winter Simulation Conference (WSC);2023-12-10

2. Arterial Signal Coordination Considering the Impacts of Left-Turn Waiting Areas;Journal of Transportation Engineering, Part A: Systems;2023-10

3. A multi-path arterial progression model with variable signal structures;Transportmetrica A: Transport Science;2022-07-25

4. Incorporating Delay Minimization in Design of the Optimized Arterial Signal Progression;Transportation Research Record: Journal of the Transportation Research Board;2021-12-27

5. Design of an arterial signal progression plan for multi-path flows with only intersection turning counts;Transportation Research Part C: Emerging Technologies;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3