Object Detection-Based License Plate Localization and Recognition in Complex Environments

Author:

Tao Ting1,Dong Decun2,Huang Shize1,Chen Wei1,Yang Lingyu1

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China

2. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai, China

Abstract

Automatic license plate recognition (ALPR) has made great progress, yet is still challenged by various factors in the real world, such as blurred or occluded plates, skewed camera angles, bad weather, and so on. Therefore, we propose a method that uses a cascade of object detection algorithms to accurately and speedily recognize plates’ contents. In our method, YOLOv3-Tiny, an end-to-end object detection network, is used to locate license plate areas, and YOLOv3 to recognize license plate characters. According to the type and position of the recognized characters, a logical judgment is made to obtain the license plate number. We applied our method to a truck weighing system and constructed a dataset called SM-ALPR, encapsulating pictures captured by this system. It is demonstrated by experiment and by comparison with two other methods applied to this dataset that our method can locate 99.51% of license plate areas in the images and recognize 99.02% of the characters on the plates while maintaining a higher running speed. Specifically, our method exhibits a better performance on challenging images that contain blurred plates, skewed angles, or accidental occlusion, or have been captured in bad weather or poor light, which implies its potential in more diversified practice scenarios.

Funder

national natural science foundation of china

National Key R&D Program of China

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3