Machine Learning and Image Recognition Technologies to Identify Built Environment Barriers and Incentives to Walk

Author:

Trichês Lucchesi Shanna1ORCID,de Abreu e Silva João2ORCID,Margarita Larranaga Ana1ORCID,Zechin Douglas1ORCID,Beatriz Bettella Cybis Helena1ORCID

Affiliation:

1. Transport System Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

2. CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Abstract

The local built environment characteristics deeply influence pedestrians’ behavior, favoring or imposing barriers on walking trips. However, identifying micro-scale built environment data is challenging and time consuming, and in developing countries there is a general lack of reliable information at street level. The recent development of machine learning and image recognition algorithms is helping researchers to collect data quickly, automatically, and on a large scale. Therefore, this study aims to test the application of an existing semantic segmentation algorithm to represent urban scenes in the city of São Paulo. A confirmatory multivariate technique (structural equation model [SEM]) is used to test if a combination of the predetermined categories derived from machine learning algorithms helps to understand which type of environment (urban scenes) represents barriers or incentives to walk. The impacts of the urban scenes on the walking behavior mediated by the walkability perceptions were tested using the aforementioned SEM model. Car-oriented and unoccupied areas, with a high presence of heavy vehicles and a large presence of vegetation, are considered detrimental to the walkability perception and consequently to the walking frequency. On the other hand, densified areas, proximity to public transportation routes, and the presence of lighting and other pedestrians are considered friendlier for pedestrians, encouraging residents to walk.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3