Metro Network Operational Solutions for Connectivity Control based on Percolation Theory

Author:

Kim Sion1ORCID,Ku Donggyun2ORCID,Lee Seungjae2ORCID

Affiliation:

1. Department of Transportation Engineering/Department of Smart Cities, University of Seoul, Seoul, Republic of Korea

2. Department of Transportation Engineering, University of Seoul, Seoul, Republic of Korea

Abstract

Recent studies have applied the percolation theory to analyze the connectivity of networks in the transportation field. However, research was conducted in a manner that completely removed the function of nodes or links. There was a limit in that applying public transportation was difficult to guarantee the right to move the captive rider. In this study, penalties were imposed on public transportation nodes in the form of wait times to remove the function of node partially. Accordingly, the travel time of a network was calculated by optimal strategy assignment to reflect passenger behavior. When nodes were randomly penalized without transfer distinctions, there was a critical point of travel-time increase between cases with penalties of 50 and 60 nodes, respectively, and percolation was observed indirectly. A large and global effect of increased travel time was observed when the penalties were issued only to transfer stations. The application of a trip frequency weight increases the effect of penalties on medium- or short-timed trips. The results of this study can be used to establish quarantine policies for controlling public transportation networks. Furthermore, it is the first attempt at observing percolation by partially limiting its function in the form of node penalties in a public transportation network.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3