Affiliation:
1. Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX
2. Argonne National Laboratory, Energy Systems Division, Lemont, IL
Abstract
Transportation Network Companies (TNCs) have been steadily increasing the share of total trips in metropolitan areas across the world. Micro-modeling TNC operation is essential for large-scale transportation systems simulation. In this study, an agent-based approach for analyzing supply and demand aspects of ride-sourcing operation is done using POLARIS, a high-performance simulation tool. On the demand side, a mode-choice model for the agent and a vehicle-ownership model that informs this choice are developed. On the supply side, TNC vehicle-assignment strategies, pick-up and drop-off operations, and vehicle repositioning are modeled with congestion feedback, an outcome of the mesoscopic traffic simulation. Two case studies of Bloomington and Chicago in Illinois are used to study the framework’s computational speed for large-scale operations and the effect of TNC fleets on a region’s congestion patterns. Simulation results show that a zone-based vehicle-assignment strategy scales better than relying on matching closest vehicles to requests. For large regions like Chicago, large fleets are seen to be detrimental to congestion, especially in a future in which more travelers will use TNCs. From an operational point of view, an efficient relocation strategy is critical for large regions with concentrated demand, but not regulating repositioning can worsen empty travel and, consequently, congestion. The TNC simulation framework developed in this study is of special interest to cities and regions, since it can be used to model both demand and supply aspects for large regions at scale, and in reasonably low computational time.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献