Affiliation:
1. Chair of Traffic Engineering and Control, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
Abstract
Short-term disruptions can have a long-lasting negative effect on traffic flow exceeding the duration of the disruption itself. This is especially the case when traffic demand approaches the network’s capacity. On-demand ride-sourcing services like ride-hailing and ride-pooling do not only have an impact on the overall kilometers driven in a network, but also conduct frequent stopping maneuvers to let passengers board and alight. As further growth of such services is expected, municipalities will need to find ways to organize and, if needed, regulate such activities. This paper proposes, evaluates, and discusses two possible methods that can be part of a holistic strategy to mitigate the impacts of frequent mobility-on-demand curbside stops in an urban environment. The first method adapts the positions of stops at an intersection according to real-time signal timings without adding another variable to the already quite complex traffic signal optimization. The second method discusses a temporary reduction of the number of allowed stopping maneuvers on saturated street sections or in other sensitive areas. Both methods are evaluated using microscopic traffic simulation and result in significant reductions of average vehicle delay as well as standard deviation thereof in all investigated traffic demand scenarios. These results indicate that the proposed methods can help to preserve a stable traffic state in situations close to the capacity limit, which is to the benefit of all stakeholders involved.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Service Efficiency of Ridepooling Systems for Different Relations of Demand and Fleet Size;2023 8th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS);2023-06-14