Graph Spatiotemporal Pattern Learning Network for Real-Time Road Network Traffic Abnormal Incident Detection

Author:

Li Haitao1ORCID,Ma Yongjian1ORCID,Wang Xin2ORCID,Li Zhihui1ORCID

Affiliation:

1. College of Transportation, Jilin University, Changchun City, Jilin Province, P.R. China

2. College of Air Traffic Management, Civil Aviation University of China, Tianjin City, P.R. China

Abstract

To improve the efficiency of detecting abnormal traffic incidents on the road network and reduce the false alarm rate, a real-time traffic anomaly detection framework based on a graph spatiotemporal pattern learning (GSTPL) network is proposed. In this framework, a traffic pattern search algorithm based on a fluctuation similarity measure is designed to screen traffic flow data with the same traffic pattern, and a traffic pattern graph tuple is constructed as the input of the network model to avoid the sample imbalance problem and the effect of single-sample randomness for traffic pattern learning. Then the GSTPL network is designed to extract, unsupervised, the traffic spatiotemporal pattern features and make a reasonable prediction of future traffic parameters as the basis for anomaly evaluation. To further restrain the effect of random fluctuations in traffic flow parameters, an abnormal state evaluation method is designed to calculate the anomaly state likelihood by prediction error distribution learning. The overall detection framework realizes stable prediction of network key node traffic parameters by using spatiotemporal pattern features to construct the traffic pattern graph tuple, and gives incident evaluation results in real time by combination with the detection data. The experiment uses I90 and I405 highway traffic data in Seattle, WA, from 2015. Through comparative analysis, the proposed incident detection method based on GSTPL has a higher detection rate and lower false alarm rate, can adaptively learn dynamic changes of the traffic pattern, and has strong adaptability and stability to different traffic environments.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3